Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Environ Manage ; 353: 120233, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38330838

RESUMO

Methane (CH4) emissions from manure management on livestock farms are a key source of greenhouse gas emissions in some regions and for some production systems, and the opportunities for mitigation may be significant if emissions can be adequately documented. We investigated a method for estimating CH4 emissions from liquid manure (slurry) that is based on anaerobic incubation of slurry collected from commercial farms. Methane production rates were used to derive a parameter of the Arrhenius temperature response function, lnA', representing the CH4 production potential of the slurry at the time of sampling. Results were used for parameterization of an empirical model to estimate annual emissions with daily time steps, where CH4 emissions from individual sources (barns, outside storage tanks) can be calculated separately. A monitoring program was conducted in four countries, i.e., Denmark, Sweden, Germany and the Netherlands, during a 12-month period where slurry was sampled to represent barn and outside storage on finishing pig and dairy farms. Across the four countries, lnA' was higher in pig slurry compared to cattle slurry (p < 0.01), and higher in slurry from barns compared to outside storage (p < 0.01). In a separate evaluation of the incubation method, in-vitro CH4 production rates were comparable with in-situ emissions. The results indicate that lnA' in barns increases with slurry age, probably due to growth or adaptation of the methanogenic microbial community. Using lnA' values determined experimentally, empirical models with daily time steps were constructed for finishing pig and dairy farms and used for scenario analyses. Annual emissions from pig slurry were predicted to be 2.5 times higher than those from cattle slurry. Changing the frequency of slurry export from the barn on the model pig farm from 40 to 7 d intervals reduced total annual CH4 emissions by 46 %; this effect would be much less on cattle farms with natural ventilation. In a scenario with cattle slurry, the empirical model was compared with the current IPCC methodology. The seasonal dynamics were less pronounced, and annual CH4 emissions were lower than with the current methodology, which calls for further investigations. Country-specific models for individual animal categories and point sources could be a tool for assessing CH4 emissions and mitigation potentials at farm level.


Assuntos
Gases de Efeito Estufa , Esterco , Animais , Suínos , Bovinos , Fazendas , Esterco/análise , Metano/análise , Gases de Efeito Estufa/análise , Temperatura
2.
Glob Chang Biol ; 29(24): 6846-6855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37800369

RESUMO

Crop residues are important inputs of carbon (C) and nitrogen (N) to soils and thus directly and indirectly affect nitrous oxide (N2 O) emissions. As the current inventory methodology considers N inputs by crop residues as the sole determining factor for N2 O emissions, it fails to consider other underlying factors and processes. There is compelling evidence that emissions vary greatly between residues with different biochemical and physical characteristics, with the concentrations of mineralizable N and decomposable C in the residue biomass both enhancing the soil N2 O production potential. High concentrations of these components are associated with immature residues (e.g., cover crops, grass, legumes, and vegetables) as opposed to mature residues (e.g., straw). A more accurate estimation of the short-term (months) effects of the crop residues on N2 O could involve distinguishing mature and immature crop residues with distinctly different emission factors. The medium-term (years) and long-term (decades) effects relate to the effects of residue management on soil N fertility and soil physical and chemical properties, considering that these are affected by local climatic and soil conditions as well as land use and management. More targeted mitigation efforts for N2 O emissions, after addition of crop residues to the soil, are urgently needed and require an improved methodology for emission accounting. This work needs to be underpinned by research to (1) develop and validate N2 O emission factors for mature and immature crop residues, (2) assess emissions from belowground residues of terminated crops, (3) improve activity data on management of different residue types, in particular immature residues, and (4) evaluate long-term effects of residue addition on N2 O emissions.


Assuntos
Produtos Agrícolas , Óxido Nitroso , Óxido Nitroso/análise , Solo/química , Poaceae , Biomassa , Nitrogênio/análise , Agricultura , Fertilizantes
3.
Sci Data ; 10(1): 587, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679357

RESUMO

Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.

4.
Sci Total Environ ; 858(Pt 3): 159919, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336033

RESUMO

AIMS: Increases in nitrogen (N) deposition may significantly affect the organic carbon (OC) cycle in soil. The inconsistent findings of the influence of added N on soil OC pools highlight the need of quantifying responses of the OC pool distribution to N addition. Moreover, the influence of N addition with a mixture of organic and inorganic N on OC pool distribution and stabilization in grassland soil remains unclear. METHODS: We carried out a five-year field experiment with adding N to examine the effects of different types of N addition on soil OC pool distribution and transformation in a meadow steppe in Inner Mongolia. We applied N in the ratios of inorganic N (IN) and organic N (ON) at 10:0 (N1), 7:3 (N2), 5:5 (N3), 3:7 (N4), 0:10 (N5), and 0:0 (CK), respectively. We measured OC content in bulk soil, particulate organic matter (POM), and mineral-associated organic matter (MAOM) fractions. Additionally, a short-term soil incubation was conducted to assess potential OC mineralization. RESULTS: Our study showed no significant effect on soil organic carbon content of different ratios of IN/ON addition. N addition reduced microbial biomass C/N ratio, the fraction of mineral-associated organic matter, cumulative CO2 emission, and microbial metabolic quotient. Compared with ON addition alone, IN addition alone showed a stronger effect on the C in different soil fractions and soil OC mineralization. The particulate organic matter (POM) fraction was more sensitive to N addition than the mineral-associated organic matter (MAOM) fraction. CONCLUSIONS: Our results suggest that the contribution of N in organic and inorganic forms affecting OC pool distribution with different turnover rates should be considered when assessing the effects of N addition types on soil OC processes in grassland.


Assuntos
Carbono , Nitrogênio , Solo , China
5.
Nat Commun ; 13(1): 4926, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995796

RESUMO

Diversified cropping systems, especially those including legumes, have been proposed to enhance food production with reduced inputs and environmental impacts. However, the impact of legume pre-crops on main crop yield and its drivers has never been systematically investigated in a global context. Here, we synthesize 11,768 yield observations from 462 field experiments comparing legume-based and non-legume cropping systems and show that legumes enhanced main crop yield by 20%. These yield advantages decline with increasing N fertilizer rates and crop diversity of the main cropping system. The yield benefits are consistent among main crops (e.g., rice, wheat, maize) and evident across pedo-climatic regions. Moreover, greater yield advantages (32% vs. 7%) are observed in low- vs. high-yielding environments, suggesting legumes increase crop production with low inputs (e.g., in Africa or organic agriculture). In conclusion, our study suggests that legume-based rotations offer a critical pathway for enhancing global crop production, especially when integrated into low-input and low-diversity agricultural systems.


Assuntos
Fabaceae , Agricultura , Produção Agrícola , Produtos Agrícolas , Fertilizantes/análise , Verduras
6.
J Exp Bot ; 73(16): 5715-5729, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35728801

RESUMO

Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.


Assuntos
Mudança Climática , Triticum , Biomassa , Estações do Ano , Temperatura
7.
Sci Total Environ ; 835: 155510, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35490810

RESUMO

Crop residues represent a climate change dilemma: they can promote carbon (C) sequestration, but they may also stimulate emissions of the powerful greenhouse gas nitrous oxide (N2O). Although there are crop residue management measures to reduce N2O emissions, N2O reductions achieved at national scale with these measures have been seldom studied, and how farmers' willingness to accept the measures constrains their potential remains largely unknown. Using Denmark as a case study, we combined a survey (completed by 592 farmers) and national data to assess the practical potential and obstacles for the successful implementation of management strategies to reduce N2O emissions from crop residues. Crop residue removal (particularly from vegetables and cover crops) and nitrification inhibitors were identified as effective in reducing N2O emissions from a biophysical perspective. If all aboveground crop residues from vegetables and cover crops were removed, N2O emissions could be reduced by 0.181 Gg N2ON, corresponding to 11% of the total N2O emissions from crop residues nationally. However, a low percentage of farmers would be willing to remove crop residues from the field, especially for vegetables and cover crops (25%), in connection to the possible short- to medium-term reduction in C sequestration. Similarly, use of nitrification inhibitors would reduce emissions by 0.247 Gg N2ON, corresponding to 15% of the total residue N2O emissions, and only 37% of all farmers would accept their use. Our results highlight that farmer' preferences for the adoption of measures can constrain the use of the few available effective mitigation options. Better knowledge dissemination and advisory services are crucial to address this challenge; farmers may be motivated to remove aboveground crop residues by highlighting the proportionally more important contribution of belowground residues to C sequestration, and that aboveground residues may have commercial value (biorefining, biogas, biofuel), although these options need further development.


Assuntos
Agricultura , Fertilizantes , Produtos Agrícolas , Dinamarca , Fertilizantes/análise , Óxido Nitroso/análise , Solo/química , Verduras
8.
Sci Rep ; 12(1): 5952, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396458

RESUMO

Comprehensive climate change mitigation necessitates soil carbon (C) storage in cultivated terrestrial ecosystems. Deep-rooted perennial crops may help to turn agricultural soils into efficient C sinks, especially in deeper soil layers. Here, we compared C allocation and potential stabilization to 150 cm depth from two functionally distinct deep-rooted perennials, i.e., lucerne (Medicago sativa L.) and intermediate wheatgrass (kernza; Thinopyrum intermedium), representing legume and non-legume crops, respectively. Belowground C input and stabilization was decoupled from nitrogen (N) fertilizer rate in kernza (100 and 200 kg mineral N ha-1), with no direct link between increasing mineral N fertilization, rhizodeposited C, and microbial C stabilization. Further, both crops displayed a high ability to bring C to deeper soil layers and remarkably, the N2-fixing lucerne showed greater potential to induce microbial C stabilization than the non-legume kernza. Lucerne stimulated greater microbial biomass and abundance of N cycling genes in rhizosphere soil, likely linked to greater amino acid rhizodeposition, hence underlining the importance of coupled C and N for microbial C stabilization efficiency. Inclusion of legumes in perennial cropping systems is not only key for improved productivity at low fertilizer N inputs, but also appears critical for enhancing soil C stabilization, in particular in N limited deep subsoils.


Assuntos
Fertilizantes , Solo , Agricultura , Carbono/metabolismo , Produtos Agrícolas/metabolismo , Ecossistema , Medicago sativa/metabolismo , Nitrogênio , Solo/química
9.
Sci Total Environ ; 828: 154388, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276154

RESUMO

Crop residues are of crucial importance to maintain or even increase soil carbon stocks and fertility, and thereby to address the global challenge of climate change mitigation. However, crop residues can also potentially stimulate emissions of the greenhouse gas nitrous oxide (N2O) from soils. A better understanding of how to mitigate N2O emissions due to crop residue management while promoting positive effects on soil carbon is needed to reconcile the opposing effects of crop residues on the greenhouse gas balance of agroecosystems. Here, we combine a literature review and a meta-analysis to identify and assess measures for mitigating N2O emissions due to crop residue application to agricultural fields. Our study shows that crop residue removal, shallow incorporation, incorporation of residues with C:N ratio > 30 and avoiding incorporation of residues from crops terminated at an immature physiological stage, are measures leading to significantly lower N2O emissions. Other practices such as incorporation timing and interactions with fertilisers are less conclusive. Several of the evaluated N2O mitigation measures implied negative side-effects on yield, soil organic carbon storage, nitrate leaching and/or ammonia volatilization. We identified additional strategies with potential to reduce crop residue N2O emissions without strong negative side-effects, which require further research. These are: a) treatment of crop residues before field application, e.g., conversion of residues into biochar or anaerobic digestate, b) co-application with nitrification inhibitors or N-immobilizing materials such as compost with a high C:N ratio, paper waste or sawdust, and c) use of residues obtained from crop mixtures. Our study provides a scientific basis to be developed over the coming years on how to increase the sustainability of agroecosystems though adequate crop residue management.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Agricultura , Carbono , Fertilizantes/análise , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Solo/química
10.
Sci Total Environ ; 828: 154316, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35257762

RESUMO

Minimum tillage, residue recycling and the use of cover crops are key elements of conservation agriculture that play important roles in soil carbon (C) and nitrogen (N) dynamics. This study determined the long-term effects of tillage practice (conventional ploughing vs. direct seeding), straw management (retained vs. removed), and the presence of a cover crop (CC; fodder radish in this study) on nitrous oxide (N2O) emissions, nitrate (NO3-) leaching, and soil mineral N dynamics between October 2019 and June 2020. In the factorial experiment with eight treatment combinations, cumulative N2O emissions ranged from 0.04 to 0.8 kg N ha-1, whereas NO3- leaching varied between 4 and 28 kg N ha-1. The study did not find effects of straw retention on NO3- leaching or N2O emissions. No-till reduced N2O emissions by on average 46% compared to ploughing. Fodder radish reduced NO3- leaching by 80-84%, and there was little N2O emission in the presence of the cover crop; however, after termination in spring there was a flush of N2O, cumulative N2O-N averaged 0.1 and 0.5 kg N ha-1 without and with a cover crop. With information about long-term soil C retention from straw and fodder radish, an overall greenhouse (GHG) balance was calculated for each system. Without straw retention after harvest, there was always a positive net GHG emission, and the indirect N2O emission from NO3- leaching was similar to, or greater than direct N2O emissions. However, in the presence of fodder radish, the direct N2O emissions after termination were much more important than indirect emissions, and negated the C input from fodder radish. Direct seeding, straw retention and the use of a cover crop showed positive effects on N retention and/or GHG balance and could substantially improve the carbon footprint of agroecosystems on sandy soil in a wet temperate climate.


Assuntos
Óxido Nitroso , Solo , Agricultura , Fertilizantes/análise , Nitratos , Óxido Nitroso/análise , Areia , Solo/química
11.
Environ Manage ; 69(1): 128-139, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453592

RESUMO

As ongoing research efforts contribute to elucidating the consequences of climate change as well as adaptation and mitigation options, aligning the current research knowledge with stakeholder opinions and perceptions remains critical for adopting effective climate change policies. This paper utilizes an interactive survey to (1) address the aforementioned gap in studies involving three groups of stakeholders and opinion makers and (2) perform a comparative primary study of the climate change assumptions, risk perceptions, policy preferences, observations, and knowledge of Czech farmers, governmental policy-makers and researchers. This study shows that the stakeholder groups agree that the climate is clearly changing, attribute this change mostly to man-made causes and expect the negative effects to either prevail or be unevenly geographically distributed. The large majority of all three groups consider unmitigated climate change a major threat even by 2050 and agree that preparing in advance is the best sectoral strategy. Importantly, while investment in adaptation measures is considered the most efficient tool for accelerating the implementation of adaptation measures, the CAP and EU rules (as valid in 2016) are believed to hinder such measures. The results of this study have ramifications for the wider region of Central Europe.


Assuntos
Mudança Climática , Agricultura Florestal , Agricultura/métodos , Consenso , República Tcheca , Humanos , Políticas
12.
Sci Total Environ ; 812: 152532, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952057

RESUMO

Crop residue incorporation is a common practice to increase or restore organic matter stocks in agricultural soils. However, this practice often increases emissions of the powerful greenhouse gas nitrous oxide (N2O). Previous meta-analyses have linked various biochemical properties of crop residues to N2O emissions, but the relationships between these properties have been overlooked, hampering our ability to predict N2O emissions from specific residues. Here we combine comprehensive databases for N2O emissions from crop residues and crop residue biochemical characteristics with a random-meta-forest approach, to develop a predictive framework of crop residue effects on N2O emissions. On average, crop residue incorporation increased soil N2O emissions by 43% compared to residue removal, however crop residues led to both increases and reductions in N2O emissions. Crop residue effects on N2O emissions were best predicted by easily degradable fractions (i.e. water soluble carbon, soluble Van Soest fraction (NDS)), structural fractions and N returned with crop residues. The relationship between these biochemical properties and N2O emissions differed widely in terms of form and direction. However, due to the strong correlations among these properties, we were able to develop a simplified classification for crop residues based on the stage of physiological maturity of the plant at which the residue was generated. This maturity criteria provided the most robust and yet simple approach to categorize crop residues according to their potential to regulate N2O emissions. Immature residues (high water soluble carbon, soluble NDS and total N concentration, low relative cellulose, hemicellulose, lignin fractions, and low C:N ratio) strongly stimulated N2O emissions, whereas mature residues with opposite characteristics had marginal effects on N2O. The most important crop types belonging to the immature residue group - cover crops, grasslands and vegetables - are important for the delivery of multiple ecosystem services. Thus, these residues should be managed properly to avoid their potentially high N2O emissions.


Assuntos
Ecossistema , Óxido Nitroso , Agricultura , Produtos Agrícolas , Fertilizantes , Óxido Nitroso/análise , Solo
13.
Nat Food ; 3(7): 532-541, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-37117937

RESUMO

Global food security requires food production to be increased in the coming decades. The closure of any existing genetic yield gap (Yig) by genetic improvement could increase crop yield potential and global production. Here we estimated present global wheat Yig, covering all wheat-growing environments and major producers, by optimizing local wheat cultivars using the wheat model Sirius. The estimated mean global Yig was 51%, implying that global wheat production could benefit greatly from exploiting the untapped global Yig through the use of optimal cultivar designs, utilization of the vast variation available in wheat genetic resources, application of modern advanced breeding tools, and continuous improvements of crop and soil management.

14.
Ambio ; 50(10): 1882-1893, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33738728

RESUMO

The EU Water Framework Directive (WFD) aims to protect the ecological status of coastal waters. To establish acceptable boundaries between good and moderate ecological status, the WFD calls for reference conditions practically undisturbed by human impact. For Denmark, the nitrogen (N) concentrations present around year 1900 have been suggested to represent reference conditions. As the N load of coastal waters relates closely to runoff from land, any reduction in load links to agricultural activity. We challenge the current use of historical N balances to establish WFD reference conditions and initiate an alternative approach based on parish-level land-use statistics collected 1896/1900 and N concentrations in root zone percolates from experiments with year 1900-relevant management. This approach may be more widely applicable for landscapes with detailed historic information on agricultural activity. Using this approach, we find an average N concentration in root zone percolates that is close to that of current agriculture. Thus, considering Danish coastal waters to be practically unaffected by human activity around year 1900 remains futile as 75% of the land area was subject to agricultural activity with a substantial potential for N loss to the environment. It appears unlikely that the ecological state of coastal waters around year 1900 may serve as WFD reference condition.


Assuntos
Poluentes Químicos da Água , Água , Agricultura , Dinamarca , Monitoramento Ambiental , Humanos , Nitrogênio/análise , Poluentes Químicos da Água/análise
15.
Nat Ecol Evol ; 5(4): 487-494, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33619357

RESUMO

Ecosystem respiration is a major component of the global terrestrial carbon cycle and is strongly influenced by temperature. The global extent of the temperature-ecosystem respiration relationship, however, has not been fully explored. Here, we test linear and threshold models of ecosystem respiration across 210 globally distributed eddy covariance sites over an extensive temperature range. We find thresholds to the global temperature-ecosystem respiration relationship at high and low air temperatures and mid soil temperatures, which represent transitions in the temperature dependence and sensitivity of ecosystem respiration. Annual ecosystem respiration rates show a markedly reduced temperature dependence and sensitivity compared to half-hourly rates, and a single mid-temperature threshold for both air and soil temperature. Our study indicates a distinction in the influence of environmental factors, including temperature, on ecosystem respiration between latitudinal and climate gradients at short (half-hourly) and long (annual) timescales. Such climatological differences in the temperature sensitivity of ecosystem respiration have important consequences for the terrestrial net carbon sink under ongoing climate change.


Assuntos
Ciclo do Carbono , Ecossistema , Respiração , Solo , Temperatura
16.
J Environ Qual ; 49(2): 440-449, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33016427

RESUMO

The use of suctions cups is a common practice for estimating nitrate (NO3 -N) leaching under agricultural systems despite the various uncertainties associated with the approach. One major uncertainty is water flux, which is required for calculating NO3 -N leaching loads from measured concentrations. Another problem is the interpolation of NO3 -N concentrations between measurement days. We investigated how differences in water flux, obtained from two different models (EVACROP and APSIM), affect NO3 -N leaching loads. The effect of interpolation of NO3 -N concentrations based on days or drainage was also addressed. The models were set up according to a 2-yr field experiment with spring barley (Hordeum vulgare L. Quinch) with different levels of N fertilization rates on a loamy soil at Flakkebjerg, Denmark. Due to small differences in measured NO3 -N concentrations between sequential samplings, the method of interpolation did not significantly affect NO3 -N leaching in the two periods investigated. Although there is no standard against which leaching losses from different approaches can be tested, results highlight that the modeling of water uptake as affected by N supply influences the amount of drainage and thus calculated NO3 -N leaching. Therefore, for experiments with varying N fertilization levels, the APSIM model, which accounts for N nutrition on crop water use, is likely more accurate. For common fertilization rates, the simpler EVACROP seems appropriate. Thus, when using suction cup data for testing models or for evaluating mitigation options for nitrate leaching, the use of an appropriate model for estimating water fluxes is important.


Assuntos
Fertilizantes/análise , Nitratos/análise , Agricultura , Solo , Sucção
17.
Glob Chang Biol ; 26(9): 5077-5086, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32529708

RESUMO

Increased human-derived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how N-induced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with N-induced P limitation. Here we show, using a meta-analysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas short-term N loading (≤5 years) significantly increased soil phosphatase activity by 28%, long-term N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either short- or long-term studies. Together, these results suggest that N-induced P limitation in ecosystems is alleviated in the long-term through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.


Assuntos
Nitrogênio , Fósforo , Biomassa , Carbono , Ecossistema , Humanos , Solo
18.
Sci Total Environ ; 731: 138935, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32428749

RESUMO

This paper studies the relative importance of societal drivers and changing climate on anthropogenic nutrient inputs to the Baltic Sea. Shared Socioeconomic Pathways and Representative Concentration Pathways are extended at temporal and spatial scales relevant for the most contributing sectors. Extended socioeconomic and climate scenarios are then used as inputs for spatially and temporally detailed models for population and land use change, and their subsequent impact on nutrient loading is computed. According to the model simulations, several factors of varying influence may either increase or decrease total nutrient loads. In general, societal drivers outweigh the impacts of changing climate. Food demand is the most impactful driver, strongly affecting land use and nutrient loads from agricultural lands in the long run. In order to reach the good environmental status of the Baltic Sea, additional nutrient abatement efforts should focus on phosphorus rather than nitrogen. Agriculture is the most important sector to be addressed under the conditions of gradually increasing precipitation in the region and increasing global demand for food.

19.
Sci Total Environ ; 710: 134597, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32050364

RESUMO

Although organic cropping systems are promoted for their environmental benefits, little is known about their long-term impact on nitrogen (N) fate in the soil-plant-atmosphere system. In this paper, we analyze two long-term experiments: DOK in Switzerland (39-yr) and Foulum organic in Denmark (19-yr). Four treatments were considered in each experiment: two conventional treatments with (CONFYM) or without manure (CONMIN), organic with manure (BIOORG) and unfertilized treatment (NOFERT) at DOK; conventional (CGL-CC+IF) and three organic treatments, one with cover crops only (OGL+CC-M) and two including cover crops and grass-clover with (OGC+CC+M) or without manure (OGC+CC-M), at Foulum. STICS model was used to simulate crop production, N surplus, nitrate leaching, gaseous N losses and changes in soil organic N. It was calibrated in the conventional treatments and tested in organic systems. The crop production, N surplus and soil organic N stocks were satisfactorily predicted. The mean N surplus greatly differed between treatments at DOK, from -58 (NOFERT) to +21 kg N ha-1 yr-1 (CONFYM), but only from -9 (OGL+CC-M) to +21 kg N ha-1 yr-1 (OGC+CC+M) in Foulum. Soil N pools declined continuously in both sites and treatments at a rate varying from -18 to -78 kg N ha-1 yr-1, depending on fertilization and crop rotation. The decline was consistent with the observed N surpluses. Although not all simulations could be tested against field observations and despite of prediction uncertainties, simulations confirm the hypothesis that environmental performances resulting from C and N cycles depend more on specificities of individual than nominal treatments. Significant correlations appeared between long-term N surplus and soil N storage and between total N fertilization and total N gaseous losses. Results showed in both experiments that arable organic systems do not systematically have lower N surplus and N losses than conventional ones, providing opportunity for increasing N use efficiency of these systems.


Assuntos
Agricultura , Dinamarca , Fertilizantes , Nitrogênio , Solo , Suíça
20.
Glob Chang Biol ; 26(4): 1944-1952, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31909849

RESUMO

Climate warming affects soil carbon (C) dynamics, with possible serious consequences for soil C stocks and atmospheric CO2 concentrations. However, the mechanisms underlying changes in soil C storage are not well understood, hampering long-term predictions of climate C-feedbacks. The activity of the extracellular enzymes ligninase and cellulase can be used to track changes in the predominant C sources of soil microbes and can thus provide mechanistic insights into soil C loss pathways. Here we show, using meta-analysis, that reductions in soil C stocks with warming are associated with increased ratios of ligninase to cellulase activity. Furthermore, whereas long-term (≥5 years) warming reduced the soil recalcitrant C pool by 14%, short-term warming had no significant effect. Together, these results suggest that warming stimulates microbial utilization of recalcitrant C pools, possibly exacerbating long-term climate-C feedbacks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA